Simulating Across-Highway Connectivity for Mojave Desert Tortoises

JODI BERG TARITA HARJU ALTA SCIENCE & ENGINEERING SETH HARJU HERON ECOLOGICAL

DANNA HINDERLE

SCOTT CAMBRIN

CLARK CO. DESERT CONSERVATION PROGRAM

Gopherus agassizii

Threatened – 1990

- Urbanization
- Renewable energy
- Habitat destruction/fragmentation
- Invasive plants
- Road mortality

USFWS Recovery Plan – 2011:

- Connect functional habitat
- Importance of corridors and barriers to distribution and gene flow

Desert Conservation Program

Gray et al. 2019

Current Management Practice

Exclusionary fencing

Mortality reduced by 90%

Culverts

- Occasional use documented
- Currently untested

www.aminexfencing.com

Objective

Clark Co. Desert Conservation Program:

- Culvert study Hwys 95 and 93
- Population densities with mark-recapture
- Movement through culverts

Tortoise Capture

Clark Co. Desert Conservation Program:

- Surveyed plots
- Radio-tagged wild residents (9 M, 6 F)
- Locations every 30 mins.
- ~2,740 locs/tortoise (range: 469 4,796)

Objective

Clark Co. Desert Conservation Program:

- Culvert study Hwys 95 and 93
- Population densities with mark-recapture
- Movement through culverts

Problems

- Low sample sizes
- Mortality
- Short monitoring window

Desert Conservation Program

Objective

Clark Co. Desert Conservation Program:

- Culvert study Hwys 95 and 93
- Population densities with mark-recapture
- Movement through culverts

Problems

- Low sample sizes
- Mortality
- Short monitoring window

Desert Conservation Program

Simulations: approximate tortoise movement and culvert crossings

Movement Data

Step lengths and turning angles

Two movement behaviors:

- Localized resting
 - Feeding
 - Sunning
 - Aestivation
 - Brumation
- Active moving
 - Traveling
 - Foraging
 - Dispersal
 - Mate-seeking

SiMRiv (Quaglietta & Porto 2019)

Multi-state movements in heterogeneous environments

Resting:

 True random walk, 1-unit step length, random turning angles

Moving:

- Correlated random walk, max step = 37, correlation = 0.707
- Perceptual range Gaussian kernel centered on loc with SD of 25

Transition rates

- Resting to moving = 0.098
- Moving to resting = 0.228

Quaglietta & Porto 2019

Landscape Resistance

Re-scaled connectivity:

- 0 = low resistance
- 1 = high resistance/impermeable

Roads:

• 1 = impermeable

Culverts: 0.5 – 0.25 = attractive burrow

Simulations

Mark-recapture estimates

37 total

1000 simulations

30-min steps for 730 days

Culvert density:

- 0.65 2.58 per mile (7, 14, 28)
- Single vs double

Culvert width:

• 24 vs 72 in

Desert Conservation Program

Results

Free-ranging, tagged:2 / 41,089 (0.005%) steps

Expected:~64 / simulation

Results

Free-ranging, tagged:2 / 41,089 (0.005%) steps

Expected:~64 / simulation

Simulated average (range) %:

Culvert	Width ((in)
		. /

		24	72
# Culverts	7	0.00002 (0 – 0.00023)	0.00007 (0 – 0.00039)
	14	0.00004 (0 – 0.00023)	0.00014 (0-0.00062)
	28	0.00007 (0 – 0.00039)	0.00023 (0 - 0.00085)
	Dbl 7 (14 total)	0.00005 (0 – 0.00039)	0.00016 (0-0.00062)
	Dbl 14 (28 total)	0.00008 (0 – 0.00039)	0.00031 (0 - 0.00085)

Tagged tortoises:

- Pre-established territories
- Highways = danger
- Culverts = small and inconspicuous

Desert Conservation Program

Tagged tortoises:

- Pre-established territories
- Highways = danger
- Culverts = small and inconspicuous

Simulated tortoises:

more steps, more culverts ≠ higher crossing rates

Desert Conservation Program

Tagged tortoises:

- Pre-established territories
- Highways = danger
- Culverts = small and inconspicuous

Simulated tortoises:

more steps, more culverts
 inigher crossing rates
 BUT
 more, wider culverts
 =
 higher crossing rates

Desert Conservation Program

Tagged tortoises:

- Pre-established territories
- Highways = danger
- Culverts = small and inconspicuous

Simulated tortoises:

more steps, more culverts higher crossing rates BUT more, wider culverts = higher crossing rates

Desert Conservation Program

Historically: 1 cross/gen = 0.00023%

28, 72" = 0.00023% 14 dbl (28), 72" = 0.00031%

Edwards et al. 2004

Management Implications

Roads and fences fragment habitat and impede connectivity

Densities/widths of culverts should be considered

- **USFWS 2014:** 670 m (0.4 mile) ≈ 2.58 culverts/mile
- Maximize where/when possible
- Increase size when replacing/retrofitting
- Additional culverts at key locations (e.g., desert dry washes)
- More frequent placements

Endangered Species International

Thank you!

Desert Conservation Program

